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Abstract. We explore the role of disorder-induced localization in the dynamics of glasses and
supercooled liquids using instantaneous normal mode (INM) analysis. This study is motivated
by the fact that such localized excitations (tunnelling states and soft harmonic vibrations) are
believed to be important in the thermodynamics and dynamics of amorphous systems at very low
temperatures. The results are presented for two simple model systems that show the existence
of a temperature below which all unstable INMs become localized. The relationship of this
temperature to the glass transition is discussed.

1. Introduction

Amorphous materials at very low temperatures possess a variety of properties that are quite
distinct from those of crystals. For example, the heat capacities of amorphous materials
below about 1 K increase linearly with increasingT and are significantly larger than their
crystalline counterparts (which vary generically asT 3) [1]. Similar anomalous behaviour
is found for a variety of other properties, such as thermal conductivity. Although many
issues remain unresolved, these anomalies are, at present, best explained by the presence
of disorder-induced localized excitations that coexist with and dominate the sound waves
at low frequencies. At very low temperatures these states are primarily tunnelling modes
(two-level systems (TLSs)) [2, 3]. At higher temperatures there is evidence [4, 5] that the
dominant excitations here are low-frequency quasi-localized (resonant) harmonic vibrations.

Recent experiments indicate a correlation between the nature of the glass transition and
the relative concentration of TLSs and the quasi-localized harmonic modes [6, 7]. Given
this correlation and the dominance of localized modes at very low temperatures, it is natural
to speculate as to the role of localization at higher temperatures in the vicinity ofTg. In this
work, we explore this question in two model systems using the technique of instantaneous
normal mode (INM) analysis.

2. Instantaneous normal modes

Like standard normal modes, INMs [8, 9] are defined by expanding the potential energy of
an N -particle system about a chosen configuration and diagonalizing the second-derivative
(force-constant) matrix; the resulting eigenvectors and eigenvalues are the modes and the
squared mode frequencies, respectively. The configurations used to determine the INM
spectrum are not potential minima, as in normal mode analysis, but are taken directly
from the trajectory at a given temperature. The force-constant matrix thus produced
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Figure 1. The average INM (a) DOS and (b) participation ratio for the inverse-sixth power
system at several reduced temperatures as functions of frequency (in units of (ε/mσ 2)1/2. For
display purposes, the imaginary frequencies are shown as negative frequencies.

is not necessarily positive definite, and negative eigenvalues (imaginary frequencies)
occur for eigenvectors representing directions with negative energy-surface curvature.
The configurationally averaged INM density of states (DOS) gives a trajectory-weighted
representation of the curvature of the many-body potential energy surface.

The INM approach has been shown to give an accurate description of short-time
dynamics in liquids [9]. By assuming that the imaginary frequency modes in the INM
spectrum represent ‘unstable’ directions in configuration space and that their relative fraction
is correlated to the number of barriers in the system that are accessible at the given
temperature, researchers have also had success in developing quantitative theories for
dynamics at long times (diffusion) in liquids, even into the supercooled regime [8].

Here, we are primarily interested in the degree to which the INMs are spatially localized
(or extended). This can be quantified for a given eigenvector in terms of the participation
ratio pα ≡ [N

∑
i (e

i
α · ei

α)2]−1, whereei
α is the projection of the eigenvector (labelled by

α) onto atomi. For extended modes,p is of order unity. For localized modes, it will scale
inversely with the system size.
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Figure 2. Same as figure 1, except for the LJ system.

3. Results and discussion

We present results for two model interaction potentials: an inverse-sixth power repulsion
v(r) = ε(σ/r)6 and a Lennard-Jones (LJ) potentialv(r) = 4ε[(σ/r)12 − (σ/r)6]. For both
systems, all simulations and INM analyses were done by varying the reduced temperature
kT /ε at fixed reduced densityρ∗ = ρσ 3 = 1.0. Except where otherwise indicated,
the systems consisted of 500 particles. For specific details of the simulations and INM
configuration analysis, see [10].

For this reduced density, we estimate the limitingT ∗
g for the inverse-sixth power system

to be between 0.05 and 0.08 [10]; the lower value is from a fit of the diffusion constant data
using a Vogel–Fulcher (VF) form and the upper value is from a power-law fit motivated
by results from mode-coupling theory [11]. For the LJ system at this density,T ∗

g has been
estimated previously [8] to be in the range 0.35–0.40.

Figures 1(a) and 1(b) show the configurationally averaged INM DOS and participation
ratios, respectively, for the inverse-sixth power system as a function of frequency for
several temperatures. The same quantities for the LJ system are shown in figure 2.
As expected, the density and average magnitude of imaginary frequencies increase with
increasing temperature. Note that the fraction of imaginary frequency modes remains non-
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Figure 3. Size dependence of the participation ratio (for the inverse-sixth power system)p(v) is
shown for a reduced temperature of 0.08 in the imaginary frequency regime. The system sizes
includeN = 128 (♦), 500 (+), 864 (�), 1024 (×) and 1458 (∗). The error bars are less than or
equal to the size of the symbols in magnitude and have therefore been omitted for clarity.

zero even well within the glass phase, and the postulated relationship between these modes
and the diffusion constant must break down at low temperatures.

We then divide the imaginary frequency modes into three categories: stable modes
(modes that simply reflect an inflection point at the side of an otherwise single-well
potential and could not be properly classified as ‘unstable’), unstable extended modes and
unstable localized modes. The modes that are unstable but spatially localized would not
contribute to liquid-like flow, since any associated barrier crossing would be confined to
local rearrangement but could still lead to overall diffusion via a hopping mechanism.

The stable and unstable imaginary frequency modes are differentiated by examining the
energy profiles generated by advancing the system along a particular eigenvector. Double
and single wells are labelled ‘unstable’ and ‘stable’, respectively. We have determined
that no unstable INMs are found with frequency magnitudes below a critical value
0.15(ε/mσ 2)1/2 and 0.25(ε/mσ 2)1/2 for the inverse-sixth and LJ potentials, respectively
[10].

To distinguish between localized and extended modes we examine the participation
ratio. Figures 1 and 2 show that the modes in the tails of the INM spectra are localized and
those near the centre are extended, having participation ratios of order unity, but a precise
determination of the localized–extended boundary (‘mobility edge’) requires an analysis of
system size dependence. Figure 3 shows the participation ratio for the imaginary frequency
part of the INM spectrum for the inverse-sixth power system atT ∗ = 0.08 for a variety of
system sizes. In this figure, we see that the participation ratio becomes significantly size
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dependent below a participation ratio of about 0.35 (forN = 500); this could be viewed as
an upper bound on the mobility edge, for which a more accurate determination would require
further analysis using much larger systems. Using a participation ratio of 0.35 to determine
the mobility edge for theN = 500 systems together with the above stability criteria for
the imaginary frequency modes, analysis of figure 1(b) yields a transition temperature for
the inverse-sixth system of about 0.06, below which all unstable INMs are localized. This
value falls within the estimated range of glass transition temperatures for this system and
could provide an explanation for the observation that belowTg there is no diffusion even
though the overall fraction of unstable modes is non-zero. Below the critical temperature,
diffusion could proceed only via a series of localized hops. When extended unstable modes
appear at higher temperatures, then a continuous flow mechanism for diffusion would be
possible.

In summary, we have shown that, as the temperature is lowered and the INM spectra
shift toward real frequencies, the mobility edge crosses the boundary between stable and
unstable modes. This indicates that there exists a temperature below which all unstable
modes become localized. From our analysis this temperature appears to be closely associated
with the glass transition and we speculate that it is a possible origin of the proposed change
in the mechanism of diffusion in fragile glasses at a temperature slightly aboveTg [12, 13].
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